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Abstract: Several approaches that utilise various questioning procedures to elicit criteria weights exist, ranging from direct rating 

and point allocation to more elaborate methods. However, decision makers often find it difficult to understand how these methods 

work and how they should be comprehended. This article discusses the SWING family of elicitation techniques and suggests a 

refined method: the P-SWING method. Based on this, we provide an integrated framework for elicitation, modelling and 

evaluation of multi-criteria decision problems. 
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1. Introduction 

Although promising from a decision-theoretical perspective, formal and semi-formal decision 

methods such as multi-criteria decision methods (MCDM) remain rather uncommon in real-

life decision modelling and analyses. This seems to owe at least to some extent to perceived 

difficulties in understanding the decision models available. In particular, there exist several 

methods and approaches designed to elicit criteria weights that utilise various questioning 

procedures, ranging from direct rating and point allocation to more elaborate methods. 

Numerous methods use trade-offs in a structured manner, with significant effects for actual 

decision-making. However, decision makers continue to find it difficult to understand their 

own preferences and how these correspond to the elicitation methods used for this purpose. 

Furthermore, most decision information is imprecise, rendering many prevalent decision tools 

inappropriate in the sense that they cannot inherently represent uncertainties. Some decision 

methods allow for the modelling of imprecision, in particular ordinal rankings and interval 

approaches (both for criteria weights and values), with the aim of avoiding unrealistic, 

overprecise or even meaningless statements, and instead only demanding information that the 

decision maker is able to express with confidence. Many MCDM researchers have thus 

argued that unreasonable exactness is counterproductive and that other means are necessary. 

Preference rankings appear to constitute one of the most commonly used means in this 

regard.
2
 

There are consequently a multitude of approaches to express preference intensities, such 

as the MACBETH method (Bana e Costa et al., 2002), ranking using the delta-ROC (Rank 

Order Centroid) approach (Sarabando and Dias, 2010), or more simplified methods such as 

Simos’ method and varieties (Figueira and Roy, 2002). The Smart Swaps methods also exist 

(Mustajoki and Hämäläinen, 2005), while Jiménez et al. (2006) combine various techniques in 

the GMAA system. Elicitations are based on attribute trade-offs or by directly assign weight 

intervals. These relaxations of precise judgments are understood to model decision problems 

more realistically (see e.g. Larsson et al., 2014; Park, 2004). However, solutions to such 

problems are sometimes hard to find and the results can be difficult to interpret. Numerous 

suggestions have also been made over the years, based on (for example) sets of probability 

measures, upper and lower probabilities, interval probabilities and utilities (Utkin, 2017), 

fuzzy measures (Aven and Zio, 2011; Shapiro and Koissi, 2015; Tang et al., 2018) and 

                                                 
1
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of elicitation procedures, including issues regarding precision. 
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evidence and possibility theory (cf., e.g. Dubois, 2010; Dutta, 2018; Rohmer and Baudrit, 

2010). There are also approaches based on second-order techniques (Danielson et al., 2007; 

Ekenberg et al., 2014). Other approaches modify some classical decision rules, such as the 

central value rule based on the midpoint of the range of possible performances (cf. Aguayo et 

al., 2014; Ahn and Park, 2008; Mateos et al., 2013; Sarabando and Dias, 2009). Salo and 

Hämäläinen (2001) have suggested a set of approaches for handling imprecise information in 

these contexts, such as the PRIME method for preference ratios, while the SMART method 

has also been implemented in software (see e.g. Mustajoki et al., 2005). Nevertheless, these 

approaches exhibit various difficulties, including combining both interval and qualitative 

estimates with weighted decision rules but without introducing very rough evaluation 

measures such as Γ-maximin or (Levi’s) E-admissibility (cf., e.g. Augustin et al., 2014). 

Greco et al. (2008) suggest UTA
GMS

 for a purpose similar to this paper (which uses an ordinal 

regression technique), generating a representation extracted from pairwise comparisons even 

when ordering is incomplete. Figueira et al. (2009) generalise this by taking cardinalities into 

account in order to obtain a class of total preference functions compatible with user 

assessments, restricting the polytope in various respects. For our purposes, this is less suitable 

because it is unclear how it can be extended when other types of information (such as interval 

constraints) also exist, resulting in computational issues as explained in, for instance, 

Danielson and Ekenberg (2007). Furthermore, in many cases the structural constraints can be 

represented by second-order information (Ekenberg et al., 2005), which provides further 

information that should be handled. Hence, our representation is in such respects more 

appropriate to the purpose of this paper, as explained below. In any case, the formalism 

suggested is by no means the only possibility, and should instead be considered an example 

(as well as being the foundation for the computer tool used below). 

One of the most important problems in many MCDM methods is the handling of trade-

off effects between the value scales of different criteria. Trade-off methods are quite useful, 

but given the number of judgements required of the decision maker they can also be very 

demanding and sometimes intractable. For example, Fischer (1995) highlights that trade-off 

methods tend to give greater weight to the most important attribute. One prominent family of 

methods addressing this and other problems is SWING weighting (von Winterfeldt and 

Edwards, 1986). As an example, the popular SMART family of MCDM methods was 

extended with SWING trade-offs, yielding the SMARTS method (Edwards and Barron, 

1994). 

This article suggests a refined method – the P-SWING method – in an attempt to 

overcome some of the typical problems associated with elicitation. The method consists of an 

amended swing-type technique at its core. However, whereas a traditional SWING session 

only contains from-worst-to-best swings, the suggested method adheres to the core ideas 

while allowing for intermediate comparisons as well. This will aid the convergence of the 

weights for the criteria. Furthermore, there is no use of zero alternatives or similar synthetic 

constructs, and instead many more available real data points are utilised. Based on this, we 

provide an integrated framework for elicitation, modelling and evaluation of multi-criteria 

decision problems. 

The following section describes an experiment to compare different MCDM methods in 

which some problems with SWING techniques were detected as side effects, and 

subsequently explored alongside remedies via focus groups. In section 3, we formalise these 

remedies into an extended method for criteria weight elicitation with improved precision, 

called P-SWING (Partial SWING). Section 4 describes how P-SWING is integrated into a 

framework for elicitation, modelling and evaluation of multi-criteria decision problems. 

Sections 5 and 6 then describe in detail how the framework is used in practice, in order to 

demonstrate its advantages. Finally, section 7 concludes the paper. 
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2. MCDM methods  

In order to investigate how some popular classes of MCDM methods are perceived and used 

in real-life decision making situations, we conducted a study involving 100 people making 

one large real-life decision each (Danielson and Ekenberg, 2016). A requirement was that 

such a decision was important, not obvious to the decision maker, and required substantial 

information collection in advance. The decisions included selecting a country or area in which 

to live, choosing a university programme and buying an apartment. The three classes of 

methods studied were generalisations of some of the most popular MCDM methods, i.e. three 

very common classes of value function methods: 

 proportional scoring methods, such as the SMART family of methods; 

 pairwise ratio scoring methods, such as the AHP method; and  

 cardinal ranking methods, such as the MACBETH or CAR methods.  

Both the proportional scoring and the cardinal ranking methods were supported by a SWING 

procedure in the step whereby criteria weights were elicited from the decision makers.  

2.1 Initial study 

As discussed in Danielson and Ekenberg (2016), each individual in a group was offered two 

to three weeks to complete a decision-making task using the three methods in parallel, before 

being asked to reflect on the advantages and disadvantages of each method. In order for the 

results to be comparable, the methods were supported by computer tools with very similar 

user interfaces, ensuring that the three methods were applied correctly. Adequate tutoring and 

guidelines for each method were available throughout the decision-making processes. The 

decision makers’ respective reports contained decision data as well as results from and a 

comparison of all three methods. The participants were subsequently interviewed in focus 

groups and their results regarding the respective methods were analysed and compared.  

However, while the results demonstrated that cardinal ranking methods outperformed 

scoring methods and pairwise comparing methods (both in terms of actual simulation results 

and the participants’ issues with using the respective methods), a complication was later 

discovered in the concluding focus groups in which each participant discussed his or her 

work. Indeed, during the focus group discussions it became evident that a large number of the 

participants had not fully understood the concept of swing weights in spite of having received 

ample instructions before as well as guidance during the work. The misunderstanding did not 

affect any method in particular (rather, the confusion was more of a general nature), but it was 

apparent that many participants treated swing weights as if they were absolute (a priori) 

weights not tied to the particular attribute scales in question. This may invalidate the 

outcomes of the usage of any decision method employing relative weights, and thus 

represents a serious obstacle to the widespread use and acceptance of decision analytical 

methods in general.  

2.2 Enlarged study 

Given that the study in Danielson and Ekenberg (2016) was not designed to deal with this 

issue, we subsequently conducted a study with 39 new participants, asking them to estimate 

absolute (a priori) weights for their criteria before the work began. They were also told to use 

relative swing weights during their decision work. After their decisions were made, the 

decision processes for the determination of criteria weights were discussed in focus groups. 

The subjects were then assessed according to whether they were able to differentiate between 

absolute (a priori) and relative (swing) weights. Three indicators were used: how close the 

relative weights were to the absolute, whether the relative weights were modified when 

alternatives with a large impact on some scales were introduced, and the reasoning when the 
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relative weights were determined. Of the 39 participants, only four demonstrated a clear 

understanding of the difference between absolute and relative weights. If this result is 

indicative of a wider (mis)use of relative weights, a SWING based methodology seems to be 

insufficient when eliciting criteria weights. On the other hand, absolute weights are neither 

mathematically nor logically advisable and also cause severe difficulties when calibrating 

scales. However, from the focus group discussions, one important observation was possible: a 

commonality between those who had realised the difference between relative and absolute 

weights and those who could realise it after the discussions was that they were able to 

comfortably reason about subparts of the scales where real decision objects (alternatives) 

were positioned. This implies a third elicitation option: to use a modified relative weight 

elicitation technique. 

During the study, it was observed that contrived reference objects such as made-up best 

or worst cases or “zero alternatives” constituted particularly poor vehicles for thought. Many 

participants exhibited considerable difficulty in understanding them or their meaning. 

Subsequent discussions in the focus groups converged into two observations on desirable 

properties (in addition to a swing-like procedure) for an elicitation technique to possess:  

 

1. The focus during the elicitation should only be on the existing real-life alternatives 

without any abstract additions.  

2. When constructing the ordering of the criteria weights, the procedure should not be 

limited to extreme points (the endpoints of the value scales), but should rather allow 

the use of all values actually asserted.  

 

Based on these desiderata and on discussions in the focus groups regarding the ways in which 

remedies and solutions could be introduced, we have designed an elicitation technique that 

extends the SWING methodology by introducing partial assignments and interval constraints. 

This extension is applicable to all SWING-related methods and has been coined P-SWING 

(Partial SWING), which is formalised in the following section and then exemplified by 

extending an existing MCDM method. 

To recap, cardinal ranking methods (represented by the CAR method) were superior to 

other classes of methods, but the elicitation component could be improved. We therefore 

propose the P-SWING method, consisting of an amended swing-type technique at its core. 

The basis is that while a traditional SWING session embraces only from-worst-to-best 

swings, P-SWING employs intermediate comparisons as well. This will rapidly aid the 

convergence of the weights for the criteria. Furthermore, there is no use for zero alternatives 

or similar synthetic constructs, and instead many more real data points are utilised. In order to 

enable a stability analysis during the evaluation phase, we also introduce intervals around the 

surrogate weights generated from the elicitation process. 

3. P-SWING 

Modelling realistic decision problems often results in numerically imprecise and vague 

sentences, such as “the value of alternative A1 under criterion C1 is greater than 40 %” or 

comparative sentences such as “the value of alternative A1 under criterion C1 is preferred to 

the value of alternative A2 under criterion C1.” Such sentences are easily translated into a 

numerical format. In the interval case, the translation is of the format vij  [a1, b1], i.e. the two 

linear inequalities vij  a1 and b1  vij, where a1 and b1 are real numbers on the scale under 

consideration. Similar translations apply when representing comparative sentences, where we 

attain inequalities in the format vij  vkl. More generally, the statements of the decision makers 

are represented by linear inequalities involving a set of decision variables {xi}, iI, which can 
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be translated into the format k1x1 + k2x2 +…+ knxn ¤ b for some constants ki, iI, and b, as 

well as relational operators ¤ representing equalities or strict or weak inequalities.
3
  

3.1 The P-SWING process 

Assume that values for each attribute Ai under each criterion Cj have been elicited. The 

ensuing step will be to assign weights to the criteria such that ∑j wj = 1. The P-SWING 

procedure is then carried out in two steps as follows. The basic idea is that after the ordinary 

weight comparisons have been undertaken, a further step is added for the purpose of verifying 

that the initial ranking is preserved, i.e., an indication that the decision maker is aware of what 

he or she is expressing. However, another important feature here is to provide the possibility 

to increase the precision in the estimate by comparing subscales with one another. The P-

SWING procedure steps are: 

 

a) In a rather traditional swing-type session, the decision maker is asked to compare 

the swings between the endpoints (best and worst outcome) regarding the criteria’s 

respective value scales. The criteria weights are ranked using an ordinal ranking 

function amended with ‘=’. Questions asked are of the type “Which is the most 

important to you: the difference between endpoints in criterion Ci or in criterion 

Cj?” The result of this step might (for instance) be a ranking w1 > w2 = w3 > w4 = 

w5, or numerical scores if such a weight representation is being used. 

Note that if we assume that vi0 and vi1 are the endpoints of the value scale for 

criterion Ci, the comparisons are then of the type (vi1−vi0)∙wi > (vj1−vj0)∙wj, i.e. of 

the character of the ordinary comparisons wj > wi. 

b) The baseline of the next step is that fractions of the criteria’s respective value 

scales are compared. Questions asked are now of the type “Which is the most 

important to you: the difference between the values α2 and α1 in criterion Ci or 

between the values α4 and α3 in criterion Cj?” This step thus introduces a new 

feature by allowing to compare parts of the scales with one another.  

The statements then consequently become of the type (α1∙vi1−α2∙vi0)∙wi > (α3∙vj1− 

α4∙vj0)∙w2 for real value statements α1 to α4 in [0,1], where αm∙vi1−αn∙vi0 > 0, for all 

i, n, m. We call these statements α-statements. 

This also means that the questions only focus on real alternatives existing in the 

current decision context. In this way, a revised system of inequalities (and 

equalities) is formed, and if this system has a solution, it is consistent, i.e. the 

decision maker has made a consistent assessment of the relative importance of 

different criteria. The weights are adjusted in accordance with the new system. 

 

Each statement is thus represented by one or more constraints, and after a session we receive 

two sets of linear constraints: one containing the values of the alternatives under the 

respective criterion and one containing the weight statements.  

3.2 P-SWING evaluations 

In order to facilitate the execution of a P-SWING process, there must be procedures present to 

continuously validate the input and support further input. In this section, we suggest a 

formalism that will take care of this support by introducing and ensuring consistency in two 

sets of linear constraints: one set of weights (the ones to be swinged) and one set of values 

                                                 
3
 The index set I is {1,…,n} where n is the number of variables in X. 
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(the ones to form the judgement basis for swinging). This will help prepare the evaluation of 

the decision problem, as it consists of evaluating the formula (1) (see section 4 below) 

involving the weights and the values of the problem.  

In the presentation below, we will refer to the conjunction of constraints for the weights, 

together with i wi = 1, as the swing base (S). The value base (V) consists of similar 

translations of vague and numerically imprecise value estimates in terms of vij. The collection 

of alternatives, criteria as well as the weight and value statements constitutes a decision 

problem. Furthermore, the initial most representative point (MR-point) of the weights must be 

modified according to the new information provided. 

 

Definition 3.1: Given a set of variables S = {xi}, iI, a continuous function g:S
n
[0, 1], and 

real numbers a,b  [0,1] with a ≤ b, an interval constraint g(x1,…,xn)  [a,b] is a shorter form 

for a pair of weak inequalities g(x1,…,xn) ≥ a and g(x1,…,xn) ≤ b. 

 

In this manner, equalities and inequalities can be handled in a uniform way. There are many 

types of constraints, and they correspond to different types of decision-maker statements. 

 

Definition 3.2: Given a set of variables {xi}, iI, and real numbers a,b  [0, 1] with a ≤ b: A 

comparative constraint is an interval constraint of the form xi – xj  [a,b] with i,j  I and i ≠ j. 

 

All interval constraints are linear. A collection of interval constraints concerning the same set 

of variables is called a constraint set, and it forms the basis for the representation of decision 

situations. 

 

Definition 3.3: Given a set of variables {xi}, iI, a constraint set in {xi} is a set of interval 

constraints in {xi}. 

 

From the definition of an interval constraint, it follows that a constraint set can be seen as a 

system of inequalities. For a system of inequalities to be meaningful, there must be some 

vector of variable assignments that satisfy each inequality in the system simultaneously. 

 

Definition 3.4: Given a set of variables {xi}, iI, a solution to a system X of inequalities in 

{xi} is a real vector a = (a1,…,an) where each ai is substituted for xi such that every inequality 

in the system is satisfied.
4
 The vector a is called a solution vector to X. The solution set for X 

is {b  b is a solution to X}. 

 

Constraint sets have many properties in common, whether they are weight or value constraint 

sets. The first question is whether the elements in a constraint set are at all compatible with 

one another. This translates to the problem of whether a constraint set has a solution, i.e. if 

there exists any vector of real numbers that can be assigned to the variables. 

 

Definition 3.5: Given a set of variables {xi}, iI, a constraint set X in {xi} is consistent if the 

system of weak inequalities in X has a solution.
5
 Otherwise, the constraint set is inconsistent. 

A constraint Z is consistent with a constraint set X if the constraint set {Z}  X is consistent. 

 

                                                 
4
There exists a solution if the substitution of ai for xi in X, for all 1 ≤ i ≤ n, does not yield a contradiction.  

5
Hence there is a non-empty solution set for X. 
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In other words, a consistent constraint set is a set where the constraints are at least not 

contradictory. 

 

Definition 3.6: A swing base S consists of a set of swing weight statements to which ∑j wj = 

1 is added. 

 

Definition 3.7: A swing decision problem contains the following information about a decision 

situation: 

 A set of alternative courses of action {Ai} for i = 1,…,m (m ≥ 2); 

 A set of criteria {Ci} for i = 1,…,n (n ≥ 2); 

 For each alternative Aj and each criterion Ci, a value vij on a value scale for that 

criterion; 

 A swing base S containing all swing statements. 

 

According to the definition of an interval statement, a base can be seen as a set or system of 

inequalities. The first question is whether the statements in a swing base are compatible with 

one another. This translates into a question of pointwise consistency. 

 

Definition 3.8: A solution to a swing base is a vector w = (w1,…,wm) such that every equation 

in the corresponding system is satisfied. 

 

Definition 3.9: A swing base is pointwise consistent (or p-consistent for short) if there exists 

at least one solution to the base. Otherwise, the base is p-inconsistent. 

 

In other words, a p-consistent swing base is a base where the translated statements are at least 

not contradictory. This is a required property for a swing base following completion of the P-

SWING procedure. 

However, pointwise consistency constitutes a rather weak property of a swing base. If the 

statements in the base are consistent only at a single point, the base is vulnerable to small 

changes in the input data and to the effects of sensitivity analyses. Given that we are working 

with high degrees of imprecision, this property alone is thus too weak. We must be assured 

that the base would remain consistent at least for reasonably small changes in the interval 

statements.  

Single-point solutions in the bases are thus essentially meaningless and, to make the 

concept of consistency stronger, we introduce the concept of regular consistency. 

 

Definition 3.10: A consistent base X with variables x1,…,xn is regularly consistent (or r-

consistent for short) relative to a given regularity vector r = (r1,…,rn) if for each component in 

the norm (d1,…,dn) di ≥ ri. The ris are called regularity values. 

 

It is convenient to discuss properties of a single equation or interval statement added to a base. 

 

Definition 3.11: An equation or interval statement Z is r-consistent with an r-consistent base 

X if the base {Z}  X is r-consistent. 

 

Definition 3.12: A decision problem is r-consistent if the value base and the swing base are 

both r-consistent. 

 

The most fundamental computational component in P-SWING is a way of calculating the 

consistency of a swing base. Given that the base consists of a linear system of interval 

equations, the natural candidate for an algorithm is linear programming. In fact, p-consistency 
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is equivalent to completing phase I of a standard linear programming (LP) problem. As noted 

above, a swing base is pointwise consistent if any solution can be found to the set of interval 

equations. Let there be m interval equations in the base. By introducing new variables 

y1,…,yk, with k = 2·m, to the consistency problem, it can be reformulated as 

 

min (y1 + … + yk) 

when Ax ≥ b 

and x ≥ 0, y ≥ 0, 

 

where each interval equation ai1x1 + ai2x2 + … + ainxn  [bi,di] is transformed into the two 

equations ai1x1 + ai2x2 + … + ainxn – yj ≥ bi and ai1x1 + ai2x2 + … + ainxn + yl ≤ di. If the 

obtained minimum of y1 + … + yk has the value zero, then a solution has been found that does 

not contain any yi. Removing the yis, the resulting solution vector x is indeed a feasible 

solution, that is, the base is proven to be consistent. If the minimum of y1 + … + yk is positive, 

then it is certain that the optimal values of the yis are larger than zero, that is, at least one of 

the yis is necessary to keep the base consistent. Given that the yis were added to the base, the 

problem itself has no solution. Hence, the base is inconsistent.  

4. Evaluation 

The evaluation process is uncomplicated to perform. Assume a standard MCDM method that 

seeks to evaluate each alternative, yielding a most representative point (MR-point
6
) for each 

alternative. First, we make a pre-elicitation as in step a) of P-SWING and calculate the MR-

point with a suitable interval environment around it. Thereafter, the α-statements are added. 

These calculations are made by the LP-algorithm above. If we still have an r-consistent 

decision problem, we can proceed. The adjusted MR-point is the point that has the least 

distance from the original MR-point, as expressed by the definition below.  

 

Definition 4.1: Given an r-consistent decision problem in n dimensions, assume that the 

extreme points in each projection on the axes of the orthogonal base of the system are [ai, bi], 

and that the MR-point for that dimension is   = (c1,…,cn), then the adjusted MR-point,    = 

(c1',…, cn'), is  

            
     

     
  

  
       

       
  . 

Following the elicitation phase, the multi-criteria decision problem is evaluated as a multi-

linear problem against the background information contained in the r-consistent decision 

problem and the adjusted MR-point. This means that we solve equations of the format 

E(Ai) = 
0 2 11

1 1 2 1 2 2 1 1 2 2 1 1 2 2 1

1 2 11 1 1 1

... ... ... ...
i i ii m m

m m m m m m m m

m m

n n nn

ii ii i ii i i i ii i i i i ii i i i i

i i i i

x x x x x
 

     

   

    ,  (1) 

given r-consistent decision problems. The expected values E(Ai) are computed by solving 

successive linear programming problems in each base (weight and value). Given that the 

weight and value bases are independent, the collected solutions constitute the total solution to 

the multi-linear problem in (1).  

                                                 
6
 An MR-point is the most representative point that represents a solution to the problem. If probabilities are 

involved, this is usually the expected value. If criteria weights are involved, this is the weighted value over all 

criteria and thus over all value scales. The MR-point is a general concept covering all of the above situations and 

combinations thereof.  
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Over the years, we have developed processes and software libraries to solve problems of 

this type in a more general way, by expanding a Multi-Attribute Utility Theory (MAUT) 

approach that allows for imprecise estimates of various types. One example is the software 

DecideIT, which allows for imprecision of the kinds that we have in r-consistent decision 

problems with numerically imprecise weights and values. The cardinal ranking of DecideIT 

compares the performance of each alternative to others as well as providing an estimate of the 

reliability of the result. This tool considers the entire range of values as alternatives present 

across all criteria, and displays the plausibility of an alternative outranking those that remain. 

Various versions of DecideIT have been used in a wide variety of contexts, such as 

infrastructure development, long-term storage of nuclear waste, choice of insurance 

portfolios, demining, gold mining and applications for financial risks (Danielson and 

Ekenberg, 2007; Danielson et al., 2007, 2009; Ekenberg et al., 2009, 2017; Mihai et al., 

2015).  

The basic function of DecideIT is to investigate the ranges of values and weights for 

which a strategy is optimal against a set of equations, for instance of the type v11 > v21, w1 > 

0.1, w1 > 0.3, w1 > w3, w1  [0.3, 0.7], v11  [0.5, 0.6], etc. By examining the number of 

assignments of variable values to which the different strategies are superior or inferior, 

respectively, we can investigate the properties of the strategies. A detailed account of 

DecideIT and the utilisation of second-order information are beyond the scope of this article,
7
 

but below we present an example to illustrate how to use DecideIT together with P-SWING. 

5. Example of P-SWING evaluation process and use 

Consider a procurement process in which a large organisation is looking for a new office 

space, as its existing space has become less adequate. The decision situation is to select a 

space from four real estate developers, A, B, C, and D, in order to realise this project. The 

criteria emphasised in the selection process are functionality (basically the degree of adequacy 

of the new premises), localisation (geographical and infrastructural), opportunities for 

interaction with the surrounding society, and price. 

 

Elicitation 

First, the values for the alternative providers (when taking all participants’ preferences into 

account) are summarised, as below. We set the qualitative scales as [0, 1] and let the scale for 

the price be the actual price.  

 
Functionality Localisation Opportunities Price  

A is better than B 

B is slightly better than 

C 

C is better than D 

B is slightly better than C 

C is better than A 

A is better than D 

B is better than A 

A is better than C 

C is better than D 

A costs 5.5 MEUR 

B costs 6.0 MEUR 

C costs 5.0 MEUR 

D costs 4.0 MEUR 

 

We express this in a semantics using ‘>i’ symbols for denotation:
8
 

>0 equally good 

>1 slightly better 

>2 better 

>3 much better, 

                                                 
7
 See Ekenberg et al. (2017) and Danielson and Ekenberg (2018) for details. 

8
 Needless to say, there are various suggestions for how to interpret such statements (cf., e.g. Xu, 2013; Chen and 

Hong, 2014), but we will not discuss the exact wordings and their possible semantics, as interpretations are 

considered geometrically. If other candidates were considered more reasonable for one reason or another, the 

number of steps between the discriminative statements could be changed without affecting the general idea.  
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where            is          when i = 1 and        
    

    
       

      }, i.e., 

a set of linear expressions connoting i “steps” between            , using auxiliary variables 

   
, when i > 1. 

This results in the following value statements: 

 
vF(A) >2 vF(B) vL(B) >1 vL(C) vO(B) >2 vO(A) vP(A) = 5.5 

vF(B) >1 vF(C) vL(C) >2 vL(A) vO(A) >2 vO(C) vP(B) = 6.0 

vF(C) >2 vF(D) vL(A) >2 vL(D) vO(C) >2 vO(D) vP(C) = 5.0 

   vP(D) = 4.0 

 

Following the process described above, and assuming that there are no immediate conflicts in 

the initial preferences, they make up an initial ranking that results in Functionality being the 

most important criterion, followed by Localisation. Thereafter follows Opportunities, and 

finally Price.  

 

Considering the scale endpoints, assume that the participants provide the following statements 

as a result of step (i), yielding the following initial ranking: Functionality is slightly more 

important than Localisation, which is more important than Opportunities. Finally, 

Opportunities is more important than Price. This is translated into the following cardinal 

ranking order: 
 

 w(F) >1 w(L) 

 w(L) >2 w(O) 
 w(O) >2 w(P) 

 

In step (ii), the decision makers react by providing the following supplementary statements 

for the criteria: 

 

 The difference between B and C in Functionality is more important than B and A in 

Localisation. 

 The difference between C and D in Functionality is more important than A and D in 

Opportunity. 

 The difference between C and A in Localisation is more important than B and D in 

Opportunity. 

 The difference between B and C in Localisation is more important than a Price 

difference of 1 MEUR. 

 

Evaluation 

In spite of the structural simplicity of the problem, it is comparatively difficult to provide a 

recommendation without further analysis. The value statements are measured on [0, 1]-scales 

by assigning ‘1’ to the best value and ‘0’ to the worst in each criterion. The other values are 

henceforth placed linearly on each [0, 1]-scale so that each “step” in the description above 

occupies an equally wide interval and the sum of the intervals fully cover the [0, 1]-scale.
9
 

The only exceptions are the endpoints where the intervals do not extend beyond the points ‘0’ 

or ‘1’. 

 

Criterion Functionality: 

                                                 

 9
 For example, assume that the statements are w(X) >1 w(Y) and w(Y) >3 w(Z). This yields 4 steps in 

total, with each step ¼ in size on the [0, 1] scale. X is placed at the upper end (1) and Z is placed at the 

lower end (0). Y is now placed 1 step from the top and 3 steps from the bottom, at 0.75.  
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Lower 

bound 

Upper 

bound 

A 0.900 1.000 

B 0.500 0.700 

C 0.300 0.500 

D 0.000 0.100 

 

Criterion Localisation: 

 

 
Lower 

bound 

Upper 

bound 

A 0.300 0.500 

B 0.900 1.000 

C 0.700 0.900 

D 0.000 0.100 

 

Criterion Opportunities: 

 

 
Lower 

bound 

Upper 

bound 

A 0.583 0.750 

B 0.917 1.000 

C 0.250 0.417 

D 0.000 0.083 

 

Criterion Price: 

 

 
Lower 

bound 

Upper 

bound 

A 0.125 0.375 

B 0.000 0.125 

C 0.375 0.625 

D 0.875 1.000 

 

Thereafter, we calculate the r-consistent decision problem from the initial rankings. The 

feasible region (orthogonal hull) of the criteria weights is then computed in two steps. First, 

the MR-point is calculated using the CAR method (Danielson and Ekenberg, 2016). To cater 

for the inherent imprecision in the elicited information, an interval of about 10% is 

subsequently formed around the MR-points by way of the DecideIT software implementation 

of CAR. This yields the following weights: 

 

 
Lower 

bound 

MR- 

point 

Upper 

bound 

w(F) 0.396 0.453 0.553 

w(L) 0.264 0.302 0.369 

w(O) 0.145 0.170 0.198 

w(P) 0.038 0.075 0.098 
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The supplementary statements in step (ii) in the P-SWING process are translated as (refer to 

the information above):
10

 

 
 0.4w(F) > 0.6w(L) 

 0.4w(L) > w(O) 

 0.4w(F) > 2/3 w(O) 

 0.2w(L) > 0.5w(P) 

 

After the statements in step (ii) have been considered, the orthogonal hull has shrunk but 

remains valid (i.e. non-empty), which continues to provide a consistent system and 

furthermore indicates that the decision maker(s) have understood the relative nature of the 

criteria weights.  

 

The modified weight intervals and adjusted MR-point are then the following: 

 

 

 
Lower 

bound 

Adjusted 

MR-point 

Upper 

bound 

w(F) 0.436 0.480 0.553 

w(L) 0.264 0.283 0.327 

w(O) 0.145 0.163 0.186 

w(P) 0.038 0.074 0.098 

 

 

A criteria tree containing this information is shown in Figure 2. 

 

 
Figure 2. Criteria tree. 

 

Once modelled, the problem can be evaluated. We use formula (1) above by using the 

DecideIT
11

 tool for analysis. In so doing, we can attain greater information regarding the 

factors involved. An initial result can be seen in Figure 3. 

 

                                                 
10

 For example, the statement “The difference between B and C in Functionality is more important than B and A 

in Localisation” by the decision maker entails that the difference between B and C on the Functionality scale 

(0.4) carries greater importance to the decision maker than the difference between B and A on the Localisation 

scale (0.6). This is then entered into the system of equations and inequalities as 0.4∙w(F) being greater than 

0.6∙w(L). These added inequalities form a set of anchor frames that the expected value solutions may not violate. 
11

 The P-SWING algorithms in this paper are implemented in the DMC decision library that underlies the 

DecideIT tool.  
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Figure 3. A first evaluation of the decision situation. 

 

In the figure, the software displays the result of assigning all possible values to all variables, 

given the supplied intervals and relations. Thus displayed are all possible expected value 

ranges (minimum through maximum) given the information entered. The figure illustrates 

how the strategies (alternative courses of action) relate to one another given the values 

defined through our ranges and comparisons. The green bar represents provider A, the blue 

bar represents provider B, the red bar represents provider C, and finally the yellow bar 

represents provider D. We can now see that provider B is slightly better than provider A, and 

much better than the other two, given the information available. Furthermore, the result is 

insensitive to changes in input values, rendering it stable. The advantages of solving problems 

in this way become even clearer when dealing with large problems, but this example 

demonstrates the principles at work. 

 

Sensitivity analyses 

Uncertainty is inherent in virtually all information in real decision situations. It is ensured that 

the requirements concerning precision in the input data of the method above are as minimal as 

possible, while still enabling a decision outcome. This is achieved by employing cardinal 

ranking instead of numerical input, and forming uncertainty intervals around the weights and 

values. One should therefore investigate how changes in different components affect the final 

result. We can now investigate the stability of the choice of a strategy (alternative) when the 

input data change. Here, we primarily investigate the limits within which the weights and 

values must remain for the decision not to change. This is achieved by allowing the input 

values to vary between possible realistic values and to investigate how these fluctuations 

affect the outcome. Thus, the values are systematically varied up and down.  

We can analyse this in several ways. For instance, we can study the stability to 

investigate the most important values. Often when we specify an interval for a variable, we 

probably do not believe in all values of the intervals equally, and rather may believe less in 

values closer to the boundaries of the intervals. Values near the boundaries are nevertheless 

added to the intervals to cover everything that we perceive as being possible given the 

uncertainty of the decision problem, but with an indication of the strengths with which we 

actually believe in the different values. Figure 4 exemplifies a possible belief in a weight of a 

criterion, where there emphasis is on the middle values of the interval. 
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Figure 4. Beliefs in different values 

In analysing the decision solution and its stability, we want to know what the situation looks 

like if we gradually reduce the interval parts in which we have least belief and focus on those 

that we believe in the most. We call this contraction, and it is realised systematically with all 

of the variables involved.
12

 Figure 5 displays the changes in the expected values for a 

particular alternative during these analyses. 

 

  
 

Figure 5. Contraction analysis for provider B. 

 

We can see how the initial expected value for provider B (at 0 % contraction) ranges 

approximately between 0.617 and 0.832. At 40 % contraction, it lies approximately between 

0.658 and 0.787, and is 0.718 at full contraction (the most likely expected value).  

 

The same analysis can be made for a pair of alternatives. Figure 6 shows how two providers 

relate to one another. A slightly simplified reading is that the greater the proportion of the 

triangle found above the x-axis, the better the strategy, and vice versa for the other strategy. 

Regarding the example, we therefore see that the decision is not totally stable (relatively 

sensitive to input data), but that provider B is better than provider A given the current 

information.  

 

                                                 
12

 There are also functions to study the sensitivity of each variable separately, so-called tornado diagrams. In 

such cases, each variable’s contribution can be studied, but a treatment of such functions is out of scope of this 

article. 
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When the triangle area is fairly centred with respect to the x-axis, it can still be difficult to 

determine a recommended strategy due to similarities or significant overlaps, and so we may 

seek to collect more information. We can then (for instance) use tornado diagrams to 

investigate which information is most important to the decision and to establish how best to 

allocate resources for further investigation. In short, an overview of the effectiveness of the 

respective strategies can be gained by examining how much of the area is located above and 

below the x-axis. As can be seen from Figure 6, provider B is slightly better than provider A 

in this respect. However, there is more to the picture. Further calculating the more detailed 

distribution of the belief mass (Ekenberg et al., 2005) yields a percentage of the mass above 

or below the x-axis, i.e. the percentage of belief supporting either one alternative or the other. 

In Figure 6, even though the triangle is fairly centred, most of the belief mass resides with 

alternative 2, which is provider B.  

 
 

Figure 6. Comparing the two strategies. 

In summary, a holistic perspective of the entire decision situation is displayed in Figure 7. 

The respective bars show the extent to which the various criteria contribute to the final values 

of the strategies (alternatives). For instance, the criterion Functionality contributes 

significantly to the value of provider A, but not as much to providers C or D. 
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Figure 7. Comparing all strategies at the same time. 

The figure also shows the confidence levels of the results, based on the distribution of the 

belief mass. It is clear that the differences between the providers are significant and that 

provider B is the best with mild confidence,
13

 that provider A comes second, followed by 

provider C with high confidence, and finally provider D with a very low value and also with 

high confidence. Provider B should therefore be selected if we have no more information. 

However, given that the confidence in the separation between provider B and A is lower (we 

saw in Figure 6 that it is 78 %), it might be worth investigating if more information exists. It 

is clear that neither C nor D is a candidate to consider. In the calculations, we have used the 

software DecideIT (version 3.0), which can be freely used as long as it is for non-commercial 

purposes (Preference, 2018). A simplified software for similar purposes is Policy Analysis 

Tool (POLA) (Larsson et al., 2018), which is used for example by Swedish municipalities for 

infrastructure investments. The latter is also free to use with the same restrictions applying 

(POLA, 2018). 

6. Comparison 

The proposed method can be compared and validated in two steps. In the first step, the 

proposed P-SWING method is compared to the same decision analytical method without P-

SWING, and in the second step, the latter is compared with other well-known methods such 

as SMART and AHP. The P-SWING method was conceptually validated in focus group 

discussions, where the inadequacy of standard SWING and non-SWING methods were 

discussed. Both the conceptual functionality and the actual process implied by the method 

were endorsed by the vast majority of focus group participants and favoured over both the 

SWING and non-SWING methods of eliciting and validating criteria weights. This ensured 

that the method was implemented in software and run on a number of test cases, one being the 

example highlighted in the previous section. The example in section 5 is built on a real-life 

                                                 
13

 Confidence here is based on the concept of support level, stating the amount of values where one alternative is 

better than another. For example, if alternative P is better than Q for 22 % of the assigned values and Q is better 

than P for 78 % of the values, then we should choose Q over P. Simply stated, it is much more likely that 

alternative Q is best if we do not have more information than already provided. 
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case where a 120 MEUR building was to be acquired in a real-estate procurement process 

with options for acquiring existing buildings as well as constructing from scratch.  

 

The most important difference is the quality assurance enabled by P-SWING. The input 

rankings of the criteria are much more reliably validated through the cross-validation 

performed by the partial swinging. The decision maker is given the opportunity to perform an 

extra quality assurance and enhancement step. As a result, the decision process outcome is 

further verified. In the example (see Figure 8), it can be seen that the two highest ranked 

alternatives, A and B, move closer together as a result of improved input quality.  

 

 
 

Figure 8. Standard SWING (left) and P-SWING (right). 

 

Having established P-SWING as an additional quality measure for ranking MCDM methods 

such as CAR, the next step is to place it among other types of methods. In Danielson and 

Ekenberg (2016) is presented a thorough investigation of three dominating classes of MCDN 

methods: scoring methods, ranking methods and pairwise comparative methods. The paper 

establishes ranking methods as one of the major classes of methods, being preferable in a 

large real-life investigation to the other two classes both on the grounds of performance and 

user experiences and satisfaction. The addition of a quality assurance step in ranking methods 

could serve as a quality enhancer, as proposed in the focus groups that led to the design of P-

SWING.  

7. Conclusions 

The elicitation methods that are today available in MCDM are often too cognitively 

demanding for normal real-life decision makers, and there is a clear need for weighting 

methods that do not require formal decision analysis knowledge. The SMART method and 

SWING weighting (in their varieties) are highly beneficial for actual decision-making, in spite 

of the fact that they are occasionally difficult to understand. Following experiments with 139 

participants, we advise against the use of pure swing-style elicitation techniques on the 

grounds of misunderstanding and misinterpreting the relative nature of swing weights, unless 

they are amended with additional procedural components to aid understanding. The main 

contribution of this article is the modification of the SWING family of elicitation techniques 
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and the suggestion of a refined method – the P-SWING method – that allows for intermediate 

comparisons as well as avoiding synthetic constructs in order to facilitate understanding. In 

this way, the quality of the weight elicitation can be improved, i.e. it is first and foremost a 

quality assurance method, an issue of considerable importance according to the focus group 

discussions. We have also demonstrated how this can be combined with an extension of an 

existing method and the enhanced DecideIT tool as part of an integrated decision process. 
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